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Abstract Electrically active implants are extremely important today as a part of
modern advanced medical technologies. Enhancing or replacing certain functions
of a specific tissue or organ in the human body is their distinct clinical role. In this
work, we present a compact thermal model of a miniaturized thermoelectric gen-
erator embedded into human tissue structure, for powering electrically active im-
plants. Heat generation by tissue perfusion is modeled as a temperature dependent
effect; thus resulting in a nonlinear-input model. We apply mathematical methods
of model order reduction to create a compact but highly accurate reduced order ther-
mal model. To overcome the nonlinear-input problem, we linearize the load vector
by snapshotting it prior to applying model order reduction. The reduced order lin-
earized model is compared to the full scale model with nonlinear input.

1 Introduction

Implantable medical devices are used to provide medical treatments and support
the diagnosis [1]. Medical technology, which improves the efficiency of necessary
medical treatments, is therefore gaining more concern. The need for developing im-
plantable medical devices for regeneration of bone and cartilage, deep brain stim-
ulation or cardiac pacing is rapidly increasing. Currently, the electrical energy for
implantable biomedical devices is provided by integrated batteries. However, bat-
teries suffer from limited energy storage capacity, limited lifetime, chemical side
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effects, and large size [2]. Furthermore, repeated surgery is required to replace bat-
teries.

As human body is a bountiful source of thermal energy, harvesting this energy to
power biomedical implants will increase their lifetime and will provide more com-
fort and safety than conventional devices [3]. A novel miniaturized thermoelectric
generator (TEG) embedded into a human body will employ the Seebeck effect to
convert thermal into electrical energy and thus power the medical implants [4, 5].
It will utilize the temperature difference across the tissue structure, as human body
maintains the core temperature of 37 ◦C and the skin surface temperature amounts
to approximately 22 ◦C to 30 ◦C. Core temperature is maintained by metabolic
heat generation, an intra-cellular bio-chemical process [6]. The heat is transferred
throughout the body by blood perfusion, a mechanism which can be modeled by
local temperature dependent heat generation rate. This temperature dependent heat
generation rate represents the nonlinear input into the thermal model. To enable effi-
cient simulations, we apply mathematical model order reduction (MOR) [7], which
was shown to provide accurate compact thermal models for linear systems [8]. In
the approach presented here, the snapshot based linearization of a temperature de-
pendent heat generation rate is performed and the reduced model is obtained for this
linearized input.

2 Case Study - Human TEG

In this work, we present the model of a TEG embedded into a simplified three layer
tissue structure. Figure 1 shows schematically the TEG embedded into a fat layer
where, maximum temperature difference can be obtained as presented in [9].

Fig. 1 Schematic of a thermoelectric generator embedded in the fat layer.

A simplified cake-like model (See Fig. 2) composed of muscle, fat and skin tis-
sues has been built for this case study. Thermal material properties of each tissue
layer are given in Table 1.
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Table 1 Thermal material properties of tissues

material property muscle fat skin blood

Density ρ [kg/m3] 1090.4 911 1109 1049.75
Specific heat capacity cp [J/kg/K] 3421.2 2348.3 3390.5 3617
Thermal conductivity κ [W/m/K] 0.4949 0.2115 0.3722 0.5168
Perfusion rate ω [1/s] 0.0004 0.0003 0.0012 0.1749

Fig. 2 Human tissue cake-like model with muscle, fat and skin layers (left). TEG model with
cylindrical housing and thermocouple legs array inside the fat layer (right).

The heat conduction in the tissue is given by the bioheat equation of Pennes [10]:

ρcp
∂T
∂ t

= ∇κ∇T +Qb +Qm, (1)

where, Qb = ρbcbω(Ta−T (r)) and Qm are perfusion and metabolic heat generation
rates, respectively. ρ , cp, κ are the density, specific heat and thermal conductivity of
the three tissue types. ρb, cb denote the thermal properties of blood and ω is a tissue-
dependent measure of perfusion. T (r) is the resulting temperature distribution and
Ta = 37◦C, is the temperature of arterial blood. Furthermore, the heat dissipated
from the skin surface is modeled by convection boundary condition:

q⊥ = h · (T (t)−Tamb), (2)

where, q⊥ is the heat flux normal to the boundary skin surface, Tamb is the ambient
temperature and h is the heat transfer coefficient in W/m2/K. The TEG itself con-
sists of two metallic discs (diameter 13 mm, height 0.9 mm) and an array of 9×9
thermocouple legs of Bismuth-telluride (κ = 1.35 W/m/K, α = 200 V/K, ρel = 10
Ωm) in between. It is enclosed by a polymer housing with low thermal conductivity
(κ = 0.25 W/m/K).

Note that, for this MOR case study, we consider purely thermal model of the
TEG. Furthermore, we perform the transient thermal simulation, to follow the
change of the heat transfer coefficient from h = 20 W/m2/K to h = 5 W/m2/K
at ambient temperature of 15 ◦C.
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3 Model Order Reduction

The numerical analysis of the TEG implanted thermal tissue model is carried out
by means of finite element method. The model (1) can be spatially discretized and
represented as the following set of ordinary differential equations:

∑
n


E · Ṫ (t) = A ·T (t)+B ·u(T (t))︸ ︷︷ ︸

Q
y(t) =C ·T (t),

(3)

where, A,E ∈ Rn×n are the global heat conductivity and heat capacity matrices,
B ∈ Rn×m is the load vector (matrix) and C ∈ Rp×n is the output vector (matrix).
T (t) ∈ Rn is the vector of unknown temperatures, n is the dimension of the system
and m and p are the number of inputs and user defined outputs, respectively. Note
that, Q is the load vector given as,

Q = ρbcbωb(Ta−T (r, t))+Qm (4)

which presents on the right hand side of the system (3).
To construct the reduced order model, we apply Krylov subspace based MOR.

Different from the approach in [11], where, the time consuming singular value de-
composition (SVD) of the thermal load snapshots is performed, in our approach, the
load snapshots, obtained at discrete time intervals, are weighted to obtain a single
linearized load for the model to be reduced.

Equation 3 with such linearized load vector can be represented as:

∑
n

{
E · Ṫ (t) = A ·T (t)+ Q̄
y(t) =C ·T (t), (5)

The exact generation of linearized load vector will be explain in the section 4.
After applying the block Arnoldi algorithm from [12] to (5), we obtain the re-

duced model as follows:

∑
r

{
Er · ż(t) = Ar · z(t)+ Q̄r
yr(t) =Cr · z(t),

(6)

where, Er =V T EV, Ar =V T AV, Q̄r =V T Q̄,Cr =CV and V ∈ Rn×r is the projection
matrix. Here, a generalized variable z(t) can be seen as a projection of n-dimensional
temperature vector to r-dimensional subspace, subjected to some some error ε:

T (t) =V · z(t)+ ε,z(t) ∈ Rr,r� n (7)

and yr(t) = Cr · z(t) is the linear combination of the reduced states, which corre-
sponds to the chosen outputs y(t) in (5).

In the Krylov subspace based moment matching approach [12], the subspace V
is found in such a way that r moments (Taylor coefficients) of the transfer function
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of (5), defined as:
H(s) =C(sE−A)−1Q̄ (8)

are preserved within a reduced model with respect to the Laplace variable s around
some apriori chosen value s0. For example, the Taylor expansion of (8) around s0 = 0
reads:

H(s) = H(0)+ ∂H
∂ s (0) · s+

1
2!

∂ 2H
∂ s2 (0) · s2 + ...

= ∑
∞
j=0−C(A−1E) jA−1Q̄︸ ︷︷ ︸

mi, i=1,...,r

s j (9)

The expansion coefficients mi are called moments of the transfer function. When
V is defined as an orthonormal bases of the following Krylov subspace:

colspan{V} = Kr{A−1E,A−1Q̄}
= {A−1Q̄,(A−1E)A−1Q̄, ...,(A−1E)rA−1Q̄} (10)

one obtains a reduced order r model (6) by projecting (5) onto V . The transfer func-
tion of (6) is defined as:

Hr(s) =Cr(sEr−Ar)
−1Q̄r (11)

and its Taylor expansion around s0 = 0 reads:

Hr(s) = Hr(0)+ ∂Hr
∂ s (0) · s+

1
2!

∂ 2Hr
∂ s2 (0) · s2 + ...

= ∑
∞
j=0−Cr(A−1

r Er)
jA−1

r Q̄r︸ ︷︷ ︸
m(r)

i , i=1,...,r

s j (12)

The property of the Krylov subspace (10) is such that the first r moments mi and
m(r)

i of (9) and (12) are matched and hence, the reduced model is an accurate ap-
proximation of the full scale model.

4 Generation of Linearized Load Vector

The nonlinear perfusion heat generation Q depends on the spatially varying temper-
ature distribution across the tissue structure T (r̄), as given by (4). The finite element
method (FEM) discretizes the computational domain into n nodes and e finite ele-
ments.

From (4), the heat generation per finite element in each tissue layer can be written
as:

Qe = ρbcbωb(Ta−Te)+Qm, (13)
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where, Te is the average temperature of the finite element e. Furthermore, we con-
struct a snapshot matrix X ∈ Re×s at s points in time (ti), whose columns are com-
prised of elemental heat generation vectors, qi:

X = [q1 q2 q3 ... qn]e×s, (14)

X =


Q11 Q12 Q13 ... Q1s

Q21 Q22 Q13 ... Q2s

...
...

...
. . .

...
Qe1 Qe2 Qe3 ... Qes


e×s

(15)

Now, the linearized elemental heat generation vector Q̄′, is obtained by taking the
weighted average of these snapshots:

Q̄′ =
s

∑
i=1

wiqi, (16)

where, wi denote the weights applied to obtain the linearized elemental heat gen-
eration load vector. Note that, the ANSYS FEM simulator [13] automatically dis-
tributes the elemental load values onto n finite element nodes to create the nodal
load vector Q̄ for the model (3). Section 5 details the construction of optimal load
vector.

5 Results

For this case-study we use 15 load-vector snapshots and weight them in different
ways as follows:
1. w1 = 0.35, w2 = 0.25, w3 = 0.25, w4 = 0.1, w5 = 0.05, w6 to w15 = 0 (first
snapshots densely weighted).
2. w11 = 0.1, w12 = 0.1, w13 = 0.25, w14 = 0.25, w15 = 0.3, w1 to w10 = 0 (last
snapshots densely weighted).
3. w1 to w15 = 1 (equal weight distribution).
The linearized elemental heat generation vector Q̄′ is obtained according to (16) and
the linearized nodal load vector is correspondingly created by ANSYS.

Figure 3 shows the study carried out for the selection of optimal weights. The
snapshots are distributed into three groups having five snapshots each; separated
by the dashed lines. As expected, within the time domain in which we weigh the
snapshots densely, the match between the full and the reduced model is better.

Based on this outcome, optimal weights are selected as follows:
w1 = 0.15, w2 = 0.12, w3 = 0.08, w4 = 0.08, w5 = 0.05, w6 = 0.05, w7 = 0.08,
w8 = 0.08, w9 = 0.1, w10 = 0.05, w11 = 0.05, w12 = 0.05, w13 = 0.05, w14 = 0.01,
w15 = 0.01.



Load Snapshot Based Nonlinear-Input MOR of a Thermal Human Tissue Model 7

Fig. 3 Temperature result comparison between full and reduced model at the bottom surface of
TEG with different weighing of snapshots.

Figure 4 shows the result comparison between the full model of order 127,944
and reduced model of order 30., with optimal weights selection. An excellent match
is obtained.
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Fig. 4 Result comparison between full model with nonlinear-input and reduced linearized model
with optimal distribution of snapshots, at the top and bottom surfaces of TEG and skin surface.
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6 Conclusion and Outlook

In this work, we studied the problem of constructing a reduced order model for first
order dynamical system with nonlinear-input. It mathematically describes a thermal
model of TEG embedded in human tissue structure. We presented the result com-
parison between the full model and reduced linearized model during the transient
simulation. The approach presented here, allows the direct implementation of model
order reduction for large-scale thermal models with nonlinear-input. The costs for
evaluating the nonlinear input term is reduced by snapshot-based linearization.
Note that, the implemented approach works well for the step input function (appli-
cable to current case-study), might however, fail for other types of input functions.
A remedy might be to apply the Proper Orthogonal Decomposition (POD) approach
for constructing a reduced order model. From our preliminary computations, it turns
out that, only two POD modes are enough to obtain the good approximation of the
full-scale model.
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